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A three-element model of braking process is proposed. In order to determine the temperature fields in
each element of the model, the analytical solution of a boundary-value problem of heat conduction for
tribosystem, consisting of the semi-space, sliding with the time-dependent velocity (braking at uniform
retardation) on a surface of the strip deposited on a semi-infinite foundation, is obtained. The results of
the numerical analysis for different materials applied in a braking system, cast iron–FMK-11 metal
ceramics–steel, are presented.
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1. Introduction

It is well known that mechanical energy is transformed into
thermal energy whenever friction occurs. This frictional heating
is responsible for temperature increase of the contact surface of
bodies and has considerable influence on the tribological behav-
iour. Therefore, the problem of frictional heat is of a great theoret-
ical and practical interest to researchers.

The heating problems of friction can be examined through a sta-
tionary, quasi-stationary and a nonstationary statements. If the slip
velocity is low then the convection caused by the motion does not
change the temperature and heat fluxes, as well as the process of
heat conduction for given external conditions lasting long enough
that the influence of initial conditions can be ignored, then in the
previous both cases the thermal contact can be assumed as station-
ary one. A quasi-stationary thermal contact takes place under the
condition of sufficiently long duration of friction between bodies
being in motion. Whereas, a nonstationary thermal contact is
either conditioned by a nonstationary distribution of the contact
pressure or by a time-dependent slip velocity as well as by the fact
that the development of heating process is considered from some
initial time.

The thermal processes during braking are nonstationary and of
short duration. A criterion for evaluation of the frictional thermal
strength of materials applied in the contacting pairs, in which
the principal role plays the temperature of friction has been
proposed by Chichinadze [1]. In the latter paper by Chichinadze
ll rights reserved.
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et al. [2] the following algorithm for calculation of contact temper-
ature for various types of braking systems was proposed:

– maximum temperature rise in the contact surface is given as
the sum of the flash temperature and the average tempera-
ture of the nominal contact area (or its contour) caused by a
heat flux on its surface;

– for calculation of the temperature flash, sliding of a pin on
the surface of a smooth semi-space is considered;

– the average temperature is obtained from a solution of a
one-dimensional contact problem with transient frictional
heat generation.

Generally speaking, the one-dimensional models correspond to
those cases when the heat flux can be assumed as normal to the
contact surface (Peclet number must be large). The verification of
many analytical solutions with the results from the experimental
data which refer to the work of the braking devices, shows that
the one-dimensional models may be considered as sufficiently
good approximation for the computation of the brake systems with
heat generation taken into account [3,4]. The theoretical model for
average temperature calculation and wear during braking, is pro-
posed in the papers [5,6]. The model is based on the assumption
that the friction elements can be treated as a semi-spaces. The
assumption is valid when the operating conditions and frictional
heating regime are such that a deep layers of the working elements
don’t have any considerable influence on the contact temperature.
But still exist so called heavy friction modes as for example the air-
craft brakes systems, when working elements of brakes are heated
through their thicknesses. The solution of the heat problem of
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Nomenclature

d strip thickness
erf(x) Gauss error function
erfc(x) = 1�erf(x) complementary error function
ierfcðxÞ ¼ p�1=2 expð�x2Þ � xerfcðxÞ integral

of the error function erfc(x)
f frictional coefficient
H() Heaviside’s step function
K coefficient of heat conduction
k coefficient of thermal diffusivity
p0 pressure
q = fVp0 intensity of the frictional heat flux (the friction power)
T temperature
Tmax maximal temperature
T0 = qd/K temperature scaling factor
T*=T/T0 dimensionless temperature
t time

tmax time, when maximal temperature is reached
ts braking time
V velocity sliding
V0 initial velocity sliding
z spatial coordinate

Greek symbols
s = kst/d

2 dimensionless time (Fourier’s number)
ss = ksts/d

2 dimensionless braking time
f = z/d dimensionless coordinate

Indexes
f bottom semi-space (foundation)
s strip
t upper semi-space (top)
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friction during braking in the case of the finite thickness of the
brakes working elements has been obtained in papers [7,8].

The metal ceramics and mineral-ceramic frictional materials are
widespreadily used in brake systems nowadays [9]. This could be
explained by their high thermal stability and high wear resistance
[10]. A friction patch of a brakes is designed as a thin cermet strip
based either on iron or on copper. In the process of braking, this
patch is pressed to the counterbody (brake drum, disk, rim of the
wheel, etc.). As a result of the friction action on the contact surface,
the kinetic energy transforms into heat. The elements of brakes are
heated and, hence, the conditions of operation of the friction
patches become less favourable: their wear intensifies and the fric-
tion coefficient decreases, which may lead to emergency situations
[11]. Thus, the problem of heating limitation of is one of the most
important in brakes design [12].

In the present paper, we derived the solution of the thermal
problem of friction for a tribosystem consisting of three bodies:
the upper semi-space (the grey cast iron disk) sliding with the
velocity V(t) = V0(1-t/ts), 0 6 t 6 ts (braking with constant
Fig. 1. Scheme of a three-e
retardation) on a surface of the strip (FMK-11 cermet frictional ele-
ment of the patch) deposited on a semi-space (the steel foundation
of a patch). The corresponding problem at V = const. (the uniform
sliding) has been studied in article [13].

2. Problem formulation

The problem of contact interaction of two semi-spaces is con-
sidered, where one of them is homogeneous and the other is a
semi-infinite foundation with a strip of thickness d deposited
on its surface. The constant pressures p0 in direction of z axis of
the Cartesian system of coordinates Oxyz are applied to the infin-
ities in semi-spaces (Fig. 1). The upper semi-space slides with
velocity

VðtÞ ¼ V0 1� t
ts

� �
Hðts � tÞ; t � 0; ð1Þ

in the direction of the y axis on the strip surface. Due to friction, the
heat is generated on a contact plane z = 0. It is supposed, that the
lement brake system.
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sum of the intensities of frictional heat fluxes directed into each
component of a friction pair is equal to the specific friction power
[14,15].

Let us find the distribution of temperature fields and intensities
of heat fluxes in the frictional elements. Further, all temperatures
and the physical parameters concerning a top semi-space, strip
and foundation will have bottom indexes ‘‘t”, ‘‘s”, and ‘‘f”, respec-
tively (Fig. 1).

The transient temperature fields Tt,s,f(z, t) can be found from the
solution of the following transient heat conduction problem of
friction:

o2Ttðz; tÞ
oz2 ¼ 1

kt

oTtðz; tÞ
ot

; 0 < z <1; t > 0; ð2Þ

o2Tsðz; tÞ
oz2 ¼ 1

ks

oTsðz; tÞ
ot

; �d < z < 0; t > 0; ð3Þ

o2Tf ðz; tÞ
oz2 ¼ 1

kf

oTf ðz; tÞ
ot

; �1 < z < �d; t > 0; ð4Þ

Tsð0; tÞ ¼ Ttð0; tÞ; t � 0; ð5Þ

Ks
oTs

oz

����
z¼0�
� Kt

oTt

oz

����
z¼0þ
¼ qðtÞ; t � 0; ð6Þ

Tsð�d; tÞ ¼ Tf ð�d; tÞ; t � 0; ð7Þ

Ks
oTs

oz

����
z¼�dþ

¼ Kf
oTf

oz

����
z¼�d�

; t � 0; ð8Þ

Ttðz; tÞ ! 0; z!1; t � 0; ð9Þ
Tf ðz; tÞ ! 0; z! �1; t � 0; ð10Þ
Ttðz; 0Þ ¼ 0; 0 � z <1; ð11Þ
Tsðz; 0Þ ¼ 0; �d � z � 0; ð12Þ
Tf ðz;0Þ ¼ 0; �1 < z � �d; ð13Þ

where taking relation (1) into account we have

qðtÞ ¼ q0q�ðtÞ; t � 0; ð14Þ

q0 ¼ fV0p0; q�ðtÞ ¼ 1� t
ts

� �
Hðts � tÞ; t � 0: ð15Þ

Let us denote by

f ¼ z
d
; s ¼ kst

d2 ; ss ¼
ksts

d2 ;

K�f ¼
Kf

Ks
; K�t ¼

Kt

Ks
; k�f ¼

kf

ks
; k�t ¼

kt

ks
; ð16Þ

T0 ¼
q0d
Ks

; T�t ¼
Tt

T0
; T�s ¼

Ts

T0
; T�f ¼

Tf

T0
: ð17Þ

By taking denotes (16) and (17) into account, the parabolic bound-
ary-value problem of heat conduction (2)–(13) can be written down
in the following form:
o2T�t ðf; sÞ
of2 ¼ 1

k�t

oT�t ðf; sÞ
os

; 0 < f <1; s > 0; ð18Þ

o2T�s ðf; sÞ
of2 ¼ oT�s ðf; sÞ

os
; �1 < f < 0; s > 0; ð19Þ

o2T�f ðf; sÞ
of2 ¼ 1

k�f

oT�f ðf; sÞ
os

; �1 < f < �1; s > 0; ð20Þ

T�s ð0; sÞ ¼ T�t ð0; sÞ; � 0; ð21Þ
oT�s
of

����
f¼0�
� K�t

oT�t
of

����
f¼0þ
¼ q�ðsÞ; s � 0; ð22Þ

T�s ð�1; sÞ ¼ T�f ð�1; sÞ; s � 0; ð23Þ
oT�s
of

����
f¼�1þ

¼ K�f
oT�f
of

����
f¼�1�

; s � 0; ð24Þ

T�t ðf; sÞ ! 0; f!1; s � 0; ð25Þ
T�f ðf; sÞ ! 0; f! �1; s � 0; ð26Þ
T�t ðf; 0Þ ¼ 0; 0 � f <1; ð27Þ
T�s ðf; 0Þ ¼ 0; �1 � f � 0; ð28Þ
T�f ðf; 0Þ ¼ 0; �1 < f � �1; ð29Þ

where

q�ðsÞ ¼ 1� s
ss

� �
Hðss � sÞ; s � 0: ð30Þ
3. Problem solution

We perform the Laplace integral transform [16]

�T�t;s;f ðf;pÞ ¼
Z 1

0
T�t;s;f ðf; sÞ expð�psÞds ð31Þ

on the heat conduction Eqs. (18)–(20) and the boundary conditions
(21)–(26) with the homogeneous initial conditions (27)–(29) for the
temperature. Thus we have

d2 �T�t ðf; pÞ
df2 � p

k�t
�T�t ðf;pÞ ¼ 0; 0 < f <1; ð32Þ

d2 �T�s ðf; pÞ
df2 � p�T�s ðf;pÞ ¼ 0; �1 < f < 0; ð33Þ

d2 �T�f ðf; pÞ
df2 � p

k�f
�T�f ðf;pÞ ¼ 0; �1 < f < �1; ð34Þ

�T�s ð0; pÞ ¼ �T�t ð0;pÞ; ð35Þ
d�T�s ðf; pÞ

df

����
f¼0�
� K�t

d�T�s ðf;pÞ
df

����
f¼0þ
¼ �q�ðpÞ ð36Þ

�T�s ð�1;pÞ ¼ �T�f ð�1;pÞ; ð37Þ
d�T�s ðf; pÞ

df

����
f¼�1þ

¼ K�f
d�T�f ðf; pÞ

df

�����
f¼�1�

; ð38Þ

�T�t ðf; pÞ ! 0; f!1; ð39Þ
�T�f ðf; pÞ ! 0; f! �1: ð40Þ

By using technique found in the paper [13] we obtain that the
solutions of the ordinary differential Eqs. (32)–(34) which satisfies
the boundary condition (35)–(40) have the form:

�T�t ðf; pÞ ¼
�q�ðpÞ

ð1þ etÞ
ffiffiffi
p
p

X1
n¼0

Kn exp � 2nþ fffiffiffiffiffi
k�t

p
 ! ffiffiffi

p
p

" #(

þkf exp � 2nþ 2þ fffiffiffiffiffi
k�t

p
 ! ffiffiffi

p
p

" #)
;0 � f <1; ð41Þ

�T�s ðf; pÞ ¼
�q�ðpÞ

ð1þ etÞ
ffiffiffi
p
p

X1
n¼0

Kn exp �ð2n� fÞ
ffiffiffi
p
p

½ �f

þkf exp �ð2nþ 2þ fÞ
ffiffiffi
p
p

½ �
�
� 1 � f � 0; ð42Þ

�T�f ðf; pÞ ¼
2�q�ðpÞ

ð1þ etÞð1þ ef Þ
ffiffiffi
p
p

X1
n¼0

Kn exp � 2nþ 1� ð1þ fÞffiffiffiffiffi
k�f

q
2
64

3
75

8><
>:

ffiffiffi
p
p

9>>=
>>;�1 < f � �1; ð43Þ

where

et �
K�tffiffiffiffiffi

k�t
p ¼ Kt

Ks

ffiffiffiffiffi
ks

kt

s
; ef �

K�fffiffiffiffiffi
k�f

q ¼ Kf

Ks

ffiffiffiffiffi
ks

kf

s
ð44Þ

Kn ¼
kn; 0 � k < 1;
ð�1Þnjkjn; �1 < k � 0;

�
ð45Þ
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k ¼ ktkf ; kt ¼
1� et

1þ et
; kf ¼

1� ef

1þ ef
; ð46Þ

�q�ðpÞ is the Laplace transform (31) of the heat flux intensity (30).
Inversion of the formulas (41)–(43) is made by the convolution

theorem for Laplace’s integral transform [16]:

LkðsÞ � L�1½�q�kðpÞ�QðpÞ; s� ¼
Z s

0
q�kðnÞQðs� nÞdn; s > 0; k ¼ 0;1;

ð47Þ

where

q�kðsÞ ¼
s
ss

� �k

; �q�kðpÞ ¼
1

pðpssÞk
; k ¼ 0;1; ð48Þ

QðsÞ ¼ 1ffiffiffiffiffiffi
ps
p exp � a

4s

� 	
; �QðpÞ ¼ 1ffiffiffi

p
p expð�

ffiffiffiffiffiffi
ap
p
Þ; a > 0: ð49Þ

Based on formulas (48) and (49), functions Lk(s) (47) are written as:

LkðsÞ ¼
1ffiffiffiffi
p
p

Z s

0

n
ss

� �k exp � a
4ðs�nÞ

h i
ffiffiffiffiffiffiffiffiffiffiffi
s� n
p dn; s > 0; k ¼ 0;1: ð50Þ

For calculation of integrals in the right-hand side of Eq. (50) we use
the substitution

u ¼ a
4ðs� nÞ ; x ¼ 1

2

ffiffiffi
a
s

r
: ð51Þ

Then, from (50) it follows that

L0ðsÞ ¼
1
2

ffiffiffiffi
a
p

r
I0ðxÞ; L1ðsÞ ¼

1
2

ffiffiffiffi
a
p

r
s
ss

� �
½I0ðxÞ �x2I1ðxÞ�; ð52Þ

where

IkðxÞ ¼
Z 1

x2

expð�uÞ
ukþ1

ffiffiffi
u
p du; k ¼ 0;1: ð53Þ

Integrating (53) by parts we find [17]:

I0ðxÞ ¼ 2
ffiffiffiffi
p
p ierfcðxÞ

x
; I1ðxÞ ¼

2
3

expð�x2Þ
x3 � I0ðxÞ


 �
: ð54Þ

Substituting functions Ik(x), k = 0,1 (54) into formulas (52) we ob-
tain finally:

LkðsÞ ¼ 2
ffiffiffi
s
p s

ss

� �k

FkðxÞ; k ¼ 0;1; ð55Þ

where

F0ðxÞ ¼ ierfcðxÞ; F1ðxÞ ¼ 3�1½2ð1þx2ÞierfcðxÞ �xerfcðxÞ�:
ð56Þ

Taking into account the form of function Lk(x), k = 0,1 (55) and
(56) from solutions (41)–(43) we find dimensionless tempera-
tures T(k)*(f,s), k = 0,1 for intensities of heat fluxes
q�kðsÞ; k ¼ 0;1 (48):

TðkÞ�t ðf; sÞ ¼
2
ffiffiffi
s
p

ð1þ etÞ
s
ss

� �kX1
n¼0

KnTðkÞ�t;n ðf; sÞ;

0 � f <1; s � 0; k ¼ 0;1; ð57Þ

TðkÞ�t;n ¼ Fk 2nþ fffiffiffiffiffi
k�t

p
 !

1
2
ffiffiffi
s
p

" #
þ kf Fk 2nþ 2þ fffiffiffiffiffi

k�t
p

 !
1

2
ffiffiffi
s
p

" #
;

n ¼ 0;1;2 . . . ; ð58Þ

TðkÞ�s ðf; sÞ ¼
2
ffiffiffi
s
p

ð1þ etÞ
s
ss

� �kX1
n¼0

KnTðkÞ�s;n ðf; sÞ;

� 1 � f � 0; s � 0; k ¼ 0;1; ð59Þ
TðkÞ�s;n ðf; sÞ ¼ Fk
2n� f

2
ffiffiffi
s
p

� �
þ kf Fk

2nþ 2þ f

2
ffiffiffi
s
p

� �
;

n ¼ 0;1;2 . . . ; ð60Þ

TðkÞ�f ðf; sÞ ¼
4
ffiffiffi
s
p

ð1þ etÞð1þ ef Þ
s
ss

� �kX1
n¼0

KnTðkÞ�f ;n ðf; sÞ;

�1 < f � �1; s � 0; k ¼ 0;1; ð61Þ

TðkÞ�f ;n ðf; sÞ ¼ Fk 2nþ 1� 1þ fffiffiffiffiffi
k�f

q
0
B@

1
CA 1

2
ffiffiffi
s
p

2
64

3
75; n ¼ 0;1;2 . . . : ð62Þ

Taking the form of function q*(s) (30) and linearity of the boundary-
value problem of heat conduction (18)–(29), the dimensionless
temperature at distance |f| <1 from the surface of friction may
be presented as the superposition [18,19]:

T�ðf;sÞ¼ ½Tð0Þ�ðf;sÞ�Tð1Þ�ðf;sÞ�HðsÞþTð1Þ�ðf;s�ssÞHðs�ssÞ; s�0:

ð63Þ
4. Some particular problem solutions

In the case of identical physical properties of a strip and founda-
tion (Ks = Kf, ks = kf) from formulae (16), (44)–(46) it follows that
K�f ¼ 1; k�f ¼ 1; ef ¼ 1; kf ¼ 0;K ¼ 0. The Eqs. (57)–(63) at n = 0 give
the solution of the problem of heat generation at braking with uni-
form retardation for two semi-infinite bodies:

TðkÞ�t ðf;sÞ¼
2
ffiffiffi
s
p

ð1þetÞ
s
ss

� �k

Fk
f

2
ffiffiffiffiffiffiffi
k�t s

p
 !

; 0� f<1; s�0; k¼0;1; ð64Þ

TðkÞ�f ðf;sÞ¼
2
ffiffiffi
s
p

ð1þetÞ
s
ss

� �k

Fk �
f

2
ffiffiffi
s
p

� �
; �1< f�0; s�0; k¼0;1: ð65Þ

Substituting solutions (64) and (65) into the right-hand side of Eq.
(63) at f = 0, 0 � s � ss, we obtain the Fazekas known formula for
the calculation of dimensionless contact temperature [20]:

T�t ð0; sÞ ¼ T�f ð0; sÞ ¼ 2

ffiffiffiffiffiffiffi
k�t s
p

r
1� 2s

3ss

� �
; 0 � s � ss: ð66Þ

At identical material properties of the top semi-space and strips
(Kt = Ks, kt = ks) from the formulae (16), (44)–(46) it follows that
K�t ¼ 1; k�t ¼ 1; et ¼ 1; kt ¼ 0;K ¼ 0 and we obtain:

TðkÞ�t ¼
ffiffiffi
s
p s

ss

� �k

Fk
f

2
ffiffiffi
s
p

� �
þ kf Fk

2þ f

2
ffiffiffi
s
p

� �
 �
;

0 � f <1; s � 0; k ¼ 0;1; ð67Þ

TðkÞ�s ðf; sÞ ¼
ffiffiffi
s
p s

ss

� �k

Fk
�f

2
ffiffiffi
s
p

� �
þ kf Fk

2þ f

2
ffiffiffi
s
p

� �
 �
;

� 1 � f � 0; s � 0; k ¼ 0;1; ð68Þ

TðkÞ�f ðf; sÞ ¼
2
ffiffiffi
s
p

ð1þ ef Þ
s
ss

� �k

Fk 1� 1þ fffiffiffiffiffi
k�f

q
0
B@

1
CA 1

2
ffiffiffi
s
p

2
64

3
75;

�1 < f � �1; s � 0; k ¼ 0;1: ð69Þ

In the case of identical physical properties of the top semi-space
and foundation (Kt = Kf = K, kt = kf = k), the dimensionless tempera-
tures are calculated under formulae (57)–(63), assuming et = ef � e,
kt = kf = k, K = k2, where

k ¼ 1� e
1þ e

; e ¼ K�ffiffiffiffiffi
k�
p ; K� ¼ K

Ks
; k� ¼ k

ks
: ð70Þ



Fig. 3. Evolution of the contact temperature T(0, t) at braking for different values of
the strip thickness d.
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If the materials of all elements are identical (Kt = Ks = Kf, kt = ks = kf)
then in Eqs. (64) and (65) it is necessary to put in addition
k�t ¼ 1; et ¼ 1 or k�f ¼ 1; ef ¼ 1; kf ¼ 0 in Eqs. (67)–(69).

5. Numerical example

The numerical results have been computed for the commercial
friction pair ChHMKh cast iron disk (the upper surface) and metal-
ceramics FMK-11 frictional element of the patch (strip) on
30KhGSA steel base (foundation), for which [2]:

� ChHMKh: Kt = 51 W m�1 K�1, kt = 14 	 10�6 m2 s�1;
� FMK-11: Ks = 34.3 W m�1 K�1, ks = 15.2 	 10�6 m2 s�1;
� 30KhGSA: Kf = 37.2 W m�1 K�1, kf = 10.3 	 10�6 m2 s�1.

The friction conditions are: p0 = 1 MPa, f = 0.7, V0 = 30 m s�1,
ts = 3.44 s. The initial temperature equals Tt,s,t(z,0) = 20 �C, |z| <1.

Isolines for the temperature constructed in the coordinate sys-
tem (z, t) are shown in Fig. 2. The maximal temperature
Tmax = 740 �C is reached on a contact surface z = 0 at the moment
t = tmax = 1.6 s, which is not much lower than half value of braking
time ts = 3.44 s. This result corresponds well with the experimental
data Tmax = 760 �C, published in monograph [2, p. 71].

The temperature evolution on a contact surface z = 0 for various
values of strip thickness d, is shown in Fig. 3. For the fixed value of
strip thickness, temperature is increasing rapidly with initializa-
tion of braking process, the maximal temperature is reached at
the moment which nearly corresponds to half of braking distance
(as it was mentioned above for d = 5 mm we have Tmax = T(0,
tmax) = 740 �C, tmax = 1.6 s). With a time passing by, the
0

Fig. 2. Isotherms of temperature T(z, t)
temperature decreases to its initial value. The results for the
boundary value of strip thickness d = 0, were achieved with use
of the contact problem solution (63)–(65) for two semi-spaces: a
top one made of cast iron and bottom – the steel one. The curve
for the strip thickness d = 5 mm.



Fig. 5. Dependence of the maximal temperature Tmax = T(0, tmax) on the strip
thickness d.
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d =1 represents data obtained for the top semi-space made of cast
iron too, and bottom made of FMK-11 cermet, respectively.

The temperature distribution with distance |z| from contact sur-
face at the moment t = tmax = 1.6 s, when temperature reaches
maximal value, at the stop moment t = ts = 3.44 and at the moment
after being stopped t = 6 s, when the cooling of tribosystem being
under study takes place, is shown in Fig. 4. It could be noticed then
that for t = tmax, the temperature decreases with thickness linearly
and could be calculated from approximate dependence: T(z, tmax) =
121.01z + 740.62, �d 6 z 6 0.

The effective heat penetration depth, the depth where temper-
ature decreases to 5% of its maximum value on the contact surface,
is equal nearly 6.5 mm in both directions from the contact surface.

Dependence of the maximal temperature Tmax = T(0, tmax) on
strip thickness d is shown in Fig. 5. It could be noticed that influ-
ence of strip thickness on maximal temperature is significant for
interval 0.01 mm 6 d 6 8 mm. Whereas for values out of this inter-
val, the temperature can be calculated with the use of contact
problem solution with frictional heating during braking for two
semi-infinite bodies (63)–(65).

With the increase of braking time ts, the temperature value in-
crease (see Fig. 6). This increase has nonlinear nature and approx-
imately can be described by the following function:
Tmax ¼ 4:94t3

s � 62:37t2
s þ 382:46ts � 37:54;0:5s � ts � 5s. At the

same moment, dependence of time tmax, when maximal tempera-
ture is reached on braking time has linear nature: tmax = 0.4624ts +
0.0353 for 0.5s 6 ts 6 5 s.

On the friction surface the dimensionless temperature TðkÞ�t ð0; sÞ
(57), (58) and TðkÞ�s ð0; sÞ (59), (60) are equal and depend on dimen-
sionless material parameters et and ef (44). These parameters are
known as ‘‘coefficients of thermal activity” [21], where et charac-
terizes thermal activity of the material of the top semi-space
relative to the material of the strip, and et – of the substrate to
the strip. Dependence of the maximal dimensionless temperature
T�max � T�t ð0; smaxÞ ¼ T�s ð0; smaxÞ from parameters et and ef is shown
in Fig. 7. When the ef parameter is fixed, and the et increases from
zero to five, the temperature on the contact surface decreases.
Regardless of the value of the other parameter ef the further in-
crease of et does not change the maximal temperature. When the
et is fixed, the increase of ef changes the contact temperature
Fig. 4. Dependence of the temperature T(z, t) on the distance |z| from surface of
friction for three values of time t at the strip thickness d = 5 mm.

Fig. 6. Dependence of the maximal temperature Tmax on the time of braking ts for
the strip thickness d = 5 mm.
slightly. It shall be noticed that the friction pair considered
et = 1.549 and ef = 1.317, and dimensionless brake time ss = 2.1 at
ts = 3.44 s and d = 5 mm.

6. Conclusions

The analytical solution of the transient one-dimensional contact
problem with frictional heat generation during braking for the sys-
tem, which consists of the semi-space and semi-infinite homoge-
neous foundation with coating, was found. Such solution
describes a model of heat generation process during single-braking
mode in multi-disk brake. As distinct from other solutions ours



Fig. 7. Dependence of the dimensionless maximal temperature T�max on the
dimensionless parameters et for three values of the dimensionless parameters et

at the dimensionless time of braking ss = 2.1.
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determines the temperature in each element of the tribosystem,
both in the heating phase at braking and in the cooling phase,
when the brake is stopped. Moreover, the temperature evolution
and distribution in relation to thickness of each materials of fric-
tion pair: cast iron disc + FMK-11 metal ceramic patch on the steel
foundation, were examined. The maximal temperature value
Tmax = 740 �C, obtained as a result of numerical calculations, corre-
sponds pleasingly with the respective value found in paper [2].
This proves that achieved in the present paper analytical solution
of a linear boundary-value problem of heat conduction parabolic
type, may be applied in calculations of temperature regimes for de-
fined brake systems even without taking into account complicated
dependences of frictional coefficient on temperature.

On the basis of achieved numerical data, the engineering formu-
las for temperature determination in the arbitrary point inside the
strip at tmax moment, when the temperature of the contact surface
reaches the maximal temperature Tmax, were proposed. In addition,
the respective dependences for Tmax and tmax on braking time ts,
were included.
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